Coculture of endothelial progenitor cells and mesenchymal stem cells enhanced their proliferation and angiogenesis through PDGF and Notch signaling
نویسندگان
چکیده
The beneficial effects of combined use of mesenchymal stem cells (MSCs) and endothelial progenitor cells (EPCs) on tissue repair and regeneration after injury have been demonstrated, but the underlying mechanism remains incompletely understood. This study aimed to investigate the effects of direct contact coculture of human bone marrow-derived EPCs (hEPCs)/human bone marrow-derived MSCs (hMSCs) on their proliferation and angiogenic capacities and the underlying mechanism. hEPCs and hMSCs were cocultured in a 2D mixed monolayer or a 3D transwell membrane cell-to-cell coculture system. Cell proliferation was determined by Cell Counting Kit-8. Angiogenic capacity was evaluated by in vitro angiogenesis assay. Platelet-derived growth factor-BB (PDGF-BB), PDGF receptor neutralizing antibody (AB-PDGFR), and DAPT (a γ-secretase inhibitor) were used to investigate PDGF and Notch signaling. Cell proliferation was significantly enhanced by hEPCs/hMSCs 3D-coculture and PDGF-BB treatment, but inhibited by AB-PDGFR. Expression of cyclin D1, PDGFR, Notch1, and Hes1 was markedly enhanced by PDGF-BB but inhibited by DAPT. In vitro angiogenesis assay showed that hEPCs/hMSCs coculture and PDGF-BB significantly enhanced angiogenic capacity, whereas AB-PDGFR significantly reduced the angiogenic capacity. PDGF-BB increased the expression of kinase insert domain receptor (KDR, an endothelial marker) and activated Notch1 signaling in cocultured cells, while DAPT attenuated the promoting effect of PDGF-BB on KDR expression of hEPCs/hMSCs coculture. hEPCs/hMSCs coculture enhanced their proliferation and angiogenic capacities. PDGF and Notch signaling pathways participated in the promoting effects of hEPCs/hMSCs coculture, and there was crosstalk between these two signaling pathways. Our findings should aid understanding of the mechanism of beneficial effects of hEPCs/hMSCs coculture.
منابع مشابه
Mesenchymal Stem Cells: Signaling Pathways in Transdifferentiation Into Retinal Progenitor Cells
Several signaling pathways and transcription factors control the cell fate in its in vitro development and differentiation. The orchestrated use of these factors results in cell specification. In coculture methods, many of these factors secrete from host cells but control the process. Today, transcription factors required for retinal progenitor cells are well known, but the generation of these ...
متن کاملBlastema from rabbit ear contains progenitor cells comparable to marrow derived mesenchymal stem cells
Rabbits have the capacity to regenerate holes in their ears by forming a blastema, a tissue that is made up of a group of undifferentiated cells. The purpose of the present study was to isolate and characterize blastema progenitor cells and compare them with marrow mesenchymal stem cells (MSCs). Five New Zealand white male rabbits were used in the present study. A 2-mm hole was created in the a...
متن کاملMesenchymal Stem Cells Do Not Suppress Lymphoblastic Leukemic Cell Line Proliferation
Background: Several studies have demonstrated the immunosuppresive effects of mes-enchymal stem cells (MSCs) in allogeneic or mitogenic interactions. Cell-cell contact inhibition and secretion of suppressive soluble factors have been suggested in this re-gard. Objective: To investigate if adipose derived MSCs could inhibit Jurkat lym-phoblastic leukemia T cell proliferation during coculture. Me...
متن کاملDifferentiation of Umbilical Cord Lining Membrane-Derived Mesenchymal Stem Cells into Endothelial-Like Cells
Background: Stem cell therapy for the treatment of vascular-related diseases through functional revascularization is one of the most important research areas in tissue engineering. The aim of this study was to investigate the in vitro differentiation of umbilical CL-MSC into endothelial lineage cells. Methods: In this study, isolated cells were characterized for expression of MSC-specific marke...
متن کامل3D study of capillary network derived from human cord blood mesenchymal stem cells and differentiated into endothelial cell with VEGFR2 protein expression
New blood forming vessels are produced by differentiation of mesodermal precursor cells to angioblasts that become endothelial cells (ECs) which in turn give rise to primitive capillary network. Human cord blood (HCB) contains large subsets of mononuclear cells (MNCs) that can be differentiated into endothelial-like cells in vitro. Human mononuclear progenitor cells were purified from fresh umb...
متن کامل